Composite Materials in Building and Construction Applications
Course Description

Composites have been used extensively in industries such as marine and transportation for more than 50 years. Yet in some industries composites are just now becoming a primary material of choice.

The use of composites in the building industry is growing rapidly.

Traditional benefits offered by composites are being recognized and utilized to address design limitations and can be used to reduce life cycle environmental and cost impacts.
Learning Objectives

• Define ‘Composite Materials’ and learn the history of composites in multiple industries and the factors that led the growth of composites in these industries.

• Identify the design and performance attributes of composites used in other industries that are applicable to the building / construction market.

• Review case studies that demonstrate how the inherent attributes of composites such as low weight, durability and low thermal conductivity, result in environmental and cost effective material options.

• Explore web based education tools that offer case studies on the use of composites in construction and allow users to connect with composite fabricators that specialize in design, fabrication and installation of composite building materials.
What is a Composite?
Composite

An engineered combination of materials that result in a finished material with better overall properties than the starting constituents.

At a microscopic level, the constituent materials remain distinct within the finished structure.
“Traditional” Composites

Wood is a natural composite of cellulose fibers in a lignin matrix.

Engineered wood is wood fibers, strands or veneers bound using adhesives.

Concrete is a composite of aggregate, cement, additives and water.

Disc brake pads are composites of hard ceramic particles embedded in soft metal.
Polymer Matrix Composites

A composite made from a polymer and a reinforcing and/or particulate material

The polymer binds the reinforcement & particulate together.

Reinforcement material
- Glass fibers
- Natural fibers
- Carbon fibers

Particulate material
- Sand, talc and other fillers
- Color chips
- Recycled glass

More Structural

More Aesthetic
Composites Are Lightweight

Polymer matrix composites are lighter than steel, aluminum, concrete and brick.

![Graph showing weight per cubic foot of different materials](image-url)

- **Steel**: Approximately 500 lb/ft³
- **Aluminum**: Approximately 100 lb/ft³
- **Concrete**: Approximately 100 lb/ft³
- **Brick**: Approximately 100 lb/ft³
- **Composite**: 112 lb/ft³
- **Wood**: Approximately 10 lb/ft³
Composites Have High Strength to Weight Ratio

- Composites are lightweight materials that are strong and stiff.
- Composites are much stronger and stiffer than pure polymers.
- Relative to wood, composites are stronger and stiffer.
- Relative to concrete, composites offer superior strength.
- Composites can have specific strength & specific stiffness similar to steels.
Composites Use in Other Industries
Marine Applications

- Late 1940’s: First boats constructed of composites
- Durability
- Design Flexibility
- Impact Resistance
- Corrosion Resistance

- Now: >90% of hulls are composite
Automotive

- Early 1950’s: First commercial car bodies

- Design Freedom
- Low Weight

- Part Consolidation
- Corrosion Resistance

- Now: Significant utilization on unique design models
Automotive

- Early 1950’s: First commercial car bodies

- Corrosion Resistance
- Low Weight

- Now: Body Panels, Valve covers, Truck beds

- Part Consolidation
- Design Freedom
Heavy Truck

- Late 1960’s saw first use in heavy truck

- Low Weight
- Corrosion Resistance

- High Heat
- Durability

- Now: 90%+ of heavy trucks are composite body
Heavy Truck

• Beyond Body Panels

• Low Weight
• Corrosion Resistance

• High Heat
• Durability

• Now: Low weight and high heat components
Aerospace

- Mid-1970’s: Concorde was ~8% Composites

- Low Weight
- High Strength

- Design / Aerodynamics
- Sound Dampening

- Now: Boeing 787
 - 80% by volume
 - 50% by weight
Wind Energy

- **1980’s**
 - 15 meter diameter
 - 50 kW turbines

- **High Strength**
- **Low Weight**

- **Today**
 - 150 meter diameter
 - 7.5 MW

- **Toughness**
- **Corrosion Resistance**
Industrial

- Storage Tanks
- Electrical Components

- Durability
- Insulating Properties
- Corrosion Resistance

- Extending life of equipment
- Facilitate safer handling
What does all this mean for the Building & Construction Industry?
Benefits of Composites

- Extremely Durable
- Low Weight
- Impact Resistance
- Design Flexibility
- High Strength to Weight ratio
- Part Consolidation
- Corrosion Resistance
- Heat Resistance
- Toughness
- Sound Dampening
- Insulation Properties
Applicability to B&C

Design Flexibility
Design Flexibility

Historical Replication

Complex Design

Courtesy: Kreysler & Associates
Composites Offer Flexibility in Design

<table>
<thead>
<tr>
<th>Process</th>
<th>Wood</th>
<th>Concrete</th>
<th>Metals</th>
<th>Composites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infuse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extrude / Pultrude</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stamp / Press Mold</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Applicability to B&C

Corrosion Resistance
Corrosion Resistance

- Composites offer very good corrosion resistance and find widespread use in corrosive environments.
 - Cladding for roofs & walls
 - Duct work and ventilation
 - Salt water environments
 - Seawalls, decks & railings
 - Water handling systems
 - Underground applications

Courtesy: Kalwall

Courtesy: Creative Pultrusion
Applicability to B&C

Strength to Weight
Strength to Weight

Prototype Investigation

- Replace failing masonry cladding in high rise building
- The **low weight composite** allows floor space to be added
- Uses **existing** building structure and foundations
Applicability to B&C

Low Thermal & Electrical Conductivity
Thermal Properties

• Composite have a very low coefficient of thermal expansion.
 • Not prone to expansion & contraction
• Composites offer low thermal conductivity

<table>
<thead>
<tr>
<th>Material</th>
<th>U-Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum (no thermal break)</td>
<td>1.9 - 2.2</td>
</tr>
<tr>
<td>Aluminum (thermal break)</td>
<td>1.0</td>
</tr>
<tr>
<td>Aluminum clad wood/reinforced vinyl</td>
<td>0.4 - 0.6</td>
</tr>
<tr>
<td>Wood and vinyl</td>
<td>0.3 - 0.5</td>
</tr>
<tr>
<td>Composite</td>
<td>0.2 - 0.3</td>
</tr>
</tbody>
</table>
Applicability to B&C

Control of Water & Moisture
Water Exposure

Composites perform well in water exposed conditions.

- Holds water in or keeps water out!
- Does not rot, swell, rust, or spall
Applicability to B&C

Durability
Durability

Composites have very good environmental durability.

- Do not swell, warp, rot
- No rust or spalling
- Resistant to animals and insects
Durability

Composites are Extremely Durable

This attribute is welcome during use
Becomes challenging for end-of-life
How do Composites Support Sustainable Building Programs?
Composites & Sustainability

- Alternative Energy
- Pollution Prevention
- Weight Reduction
- Government Initiatives
- Green Building Programs
- Life Cycle Impacts

Images:
- Alternative Energy: Wind turbines
- Pollution Prevention: Industrial site
- Weight Reduction: Scales
- Government Initiatives: USDA BioPreferred
- Green Building Programs: U.S. Green Building Council
- Life Cycle Impacts: Pie chart
Composites & Green Building

Can’t Build the Same Way & Expect a Better Outcome

- Composites have inherent benefits that are of interest to green builders
 - Durability; Insulation; Low Weight (transportation); Re-Use
 - Can incorporate bio & recycle content
 - Can offer material reduction
Composites & Green Building

Composite fabricators are responding to the demand for more sustainable products

Recycle Content
Renewable Content
Renewable & Recycle Content
Composites & Green Building

Composites products offer functional applicability to green building programs.

Day Lighting Storm Water Handling Renewable Energy
How to Learn More?

CompositeBuild.com

COMPOSITES and ARCHITECTURE
Enable the design/build community to:

- **Learn** about the benefits of composites
- Find **case studies** of composites used in construction
- Easily **connect** with composite material fabricators & distributors
BE INSPIRED.
View case studies of building applications that utilized composite materials and learn why composites were the material of choice.

Featured Application
The use of pultruded composite panels allows a unique shape while reducing weight and maintaining a weather tight enclosure. The composite system also allowed for a reduced build schedule for the Sheraton Milan Malpensa Airport Hotel and Conference Center.

Featured Product
Design freedom is a hallmark of composite materials, as evident in the variety of shapes, colors and styles of composite surfacing materials. See how this product has incorporated more than 80% recycled glass and a bio-containing binder to produce a stunning end result.

WHAT’S HAPPENING
Architectural Conference
Join us at CMI in Denver, CO, USA on May 15, 2013 for a conference covering composites in architectural applications. Learn More

Recent Article
Read about the use of composites in building enclosure applications as featured in Composites Technology magazine. Visit Link

Composite & Architecture Site
Visit this site to see more examples of composites in architectural applications.
Choose a case study to learn more.
Composite Material Case Study

A Hotel Ahead of the Curve

Application / Environment
A continuous surface that encloses a three story hotel, offices, restaurants, and conference center.

The 420 linear meters of façade incorporates bi-directional curvature into the design and allows for weather tight conditions with temperature swings as large as 70°C.

Location / Year

Architect
King Roselli Architetti (Rome, Italy)

Composite Design & Fabrication
Progettazione Construzione Ricerca (PCR) based in Milan, Italy.

Fabrication
The façade was constructed using a framework of pultruded FRP channel covered by a pultruded FRP skin that was curved around the framework in lengths up to 22 meters.

Technical Data
Fiberglass reinforcements were pultruded using direct roving for tensile strength and continuous strand mat for off-axis strength and impact resistance. Additional corrosion, water and fire resistance are provided through the unsaturated polyester resin binder system. The combination meets M1F0 fire ratings.

Why This Solution?
Many other material choices were considered, but pultruded composite offered the best solution package:
• Light weight, reducing structural loading
• Reduced costs and construction times
• Durability and corrosion resistance
• Weather tight through temperature extremes
Learn about a Product type
Exterior Cladding
Composites offer design freedom that is unmatched by traditional building materials. Composite cladding can be tailored to meet the style desired while providing an extremely durable surface at a lower weight than most traditional materials. This reduced weight will often allow for a lower cost structural support system for new construction applications.

Kreysler & Associates
Kreysler & Associates is a custom design, engineering and material development company specializing in the use of advanced manufacturing techniques to address complex construction challenges for architecture, sculpture and industrial applications.

PCR
PCR is a technology innovator active in moulding, pultrusion and synthetic quartz. The company offers a wide range of products and solutions along the industry value chain, from R&D and industrial design to finished goods. PCR offerings include: R&D, engineering, mould construction, turn-key plants, components and finished products.

PolyProducts
Since 1980 we have been a leading customizing specialist in the field of processing polyester material for architecture and design. PolyProducts offers a wide range of products and solutions along the industry value chain, from R&D and industrial design to finished goods. PolyProducts offerings include: R&D, engineering, mould construction, turn-key plants, components and finished products.
compositesandarchitecture.com
Case studies of composites in architecture

- Enable the architectural community to:
 - **Be inspired** by use of composites in applications around the world
 - **Understand** how composites can be used to address architectural challenges
New Materials

With its unique design, the facade is also unique in its material composition. To adapt to the special geometry, it was natural to design using new and innovative building materials and methods. If the same facade was to be built using traditional construction methods (i.e., steel frames), it would be a challenge to build each element separately and therefore difficult to keep uniformity. By contrast, by taking the decision to build completely out of fiberglass, it becomes possible to mass produce with much fewer discrepancies amongst the various building elements.
This relatively new terminal in Uruguay for this building was designed by architect Rafael Viñoly in the shape of a paraglider. This form, while seductive in its low-lying curved profile, introduced a number of challenges due to its three axes of curvature and design suction forces of up to 1.8 kPa.

IFC’s report states “IVC’s eventual solution was to cover the bottom surface with sandwich panels made of composite plates having a gelcoat finish and expanded polystyrene and polyurethane core. These were attached to the building’s main structure by a secondary aluminum structure so as to allow for the correction of imperfections present in the main structure. 24,000 m² of panels were supplied and assembled, without interfering with the other activities at the construction site, over a period of 9 months.” Read more here.
Connecting Our Industries

- **Compositebuild.com**
 - Connect design/build industry to composite products and fabricators

- **Compositesandarchitecture.com**
 - Further innovation and inspiration in the world of architecture, design, digital fabrication and composite technology

- **ACMAnet.org**
 - American Composite Manufacturer’s Association

- **ICPA-hq.org**
 - International Cast Polymer Association
Composites in Architecture

- Design Flexibility
- Corrosion Resistance
- Water Containment
- Strength to Weight
- Durability
Composite Materials in Building and Construction Applications

Presented by:
Bob Moffit
Sr. Product Manager
Ashland Performance Materials

Presented at:
ACMA’s CORROSION, MINING, INFRASTRUCTURE & ARCHITECTURE CONFERENCE
May 15, 2013 - Denver, CO